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DEFORMATION OF A COMPOSITE ELASTIC PLANE WEAKENED 
BY A PERIODIC SYSTEM OF THE ARBITRARILY LOADED SLITS* 

E.L. NAKHMEIN, B.M. NULLER and M.B. RYVKIN 

The paper deals with the problemsofperiodic system of cuts distributed along the 

boundary of a bond connecting two elastic half-planes and acted upon by nonperiodic 

loads. In one problem it is assumed that the cuts are open, with normal and tangent- 

ial stresses applied to their edges, while in another problem the edges touch each 

other and are loaded by tangential stresses. The method of solution is based on 

the simultaneous use of the discrete Fourier transformation and the theory of bound- 

ary value problems for automorphous analytic functions. The solutions are otained 

in quadratures. Other classes of problems to which the proposed methods can be ap- 

plied, are described. 

Generally speaking, in the case of irregular loads, the solution is usually 

based on the theory of representation of the symmetry groups /1,2/, and in the case 

of certain types of symmetry, particularly the translational, on the discreteFourier 

transforms /3-6/. However the objects of transformation may be different in one 

and the same problem, and their choice affects significantly the solvability of the 
boundary value problem for the transformed quantities in the cell of periods. Below 

two problems of the theory of cracks are solved in quadratures to illustrate the 
effective simultaneous use of the discrete Fourier transformation and the 

Muskhelishvili method. 

1. Let on elastic plane z = 5 + iy, obtained by bonding together two half-planes Y>O 
and y<O with different elastic constants, be weakened along the line of bond by a 2n - 
periodic system of open slits. In the k-th band of periods (Zk - 1)n <x < (2k + i)n, k= 0, 
+I, &2,. . . the system Lk is composed of the segments of a straightline a,, + 2kn < x < b, + 
2kn, y = O,n = 1,2,. . ., N. Arbitrary, nonperiodic, normal and tangential stresses are applied 

to the slit edges (the periodic problem was solved in /7/) 

(U” - ir,,) (5 + i0) = g* (I), 5 E Lk (1.1) 

We require to find the elastic displacements of the plane (u$ iv)(a) corresponding to the case 

of finite energy of deformation near the points separating the boundary conditions. 

Let us consider an auxilliary sequence of the boundary value problems in which the right- 

hand side of (1.1) assumes the following (nonperiodic) values depending on the parameter 'p: 

(uv - in,,) (X + 2kn & i0) = g*:” (x) eik@‘, z E Lo. (1.2) 

g*a (5) = rl$c-'g* (5 + Bsn), s = 0, ii, _t2, . ., ‘C E IO, 23x1 

We shall seek the solution of these problems in the form /8/ 

us + U” = 4Re Ic,K (2) + c,+* M (z)l 

(Jy - iz, = Cj IK (z) + (Z - 2) K’ (z)l + 6,K (Z) + 

Cj+z IM (Z) - M (2) + (Z - Z) M’(z)] 

2pj & (U + iu) = Cj [XjK (z) - (Z - 0) K’(z)] - 6jK (I) _t 

Cj* [%jM (2) + M (i) - (2 - E) M’(z)] 
6, = cz, 6, = Cl, Cl = (x1 + m)_’ 

CZ = (1 + m%J’, C, = m (1 + x,), ca = 1 + x1, m = p,pp‘ 

(1.3) 
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lim yK’ (z) = 0, lim PM' (z) = 0 
v-0 Y-0 

z#a,+2kn, z#b,+2kn, k=O,*l,... 

The functions K(z) and M(z)are regular in the complex z-plane except, perhaps,onthereal 
axis; the index j=1(j=2) d enotes the parameters referring to the half-plane 
for the plane deformation xi = 3 -4~1, 

Y > 0 (Y < 0); 
for the generalized plane state of stress 

(i+ v,)-‘, pj is the shear modulus and ~1 is the Poisson's ratio. Let us put 
xi = (3 - Yj) 

K (z) = eiazKo (z), M (z) = eiarMO (z), a = I/~~-$I (1.4) 

and substitute (1.4) into (1.3) and (1.2). We then find that the functions Ko (z) and M,(z) 
should be piecewise regular and now 2n -periodic solutions in r (ZE L,,k = 0, *1,...) of two 
problems 

K,+ (5 + 2kn) + gK,- (3: + 2kn) = e-Ws (z) 

MO+ (5 + 2kn) - MO- (Z + 2kn) = e-iaxm8 (cc) 

g = Cl-%.& 1” (x) = AC,-’ Ic&_~ (I) + clg; @)I 

m” (2) = A [g+’ (2) - g_” (~$1, A-1 = c3 + c, 

(1.5) 

Such solutions based on the theory of boundary value problems for the automorphous functions 
/9/ were constructed in /7/. Here however they assume a different form, because of the factor- 
ization of (1.4) and the conditions of decay of the functions K(z) and M(z) with z-+00. A 
solution of the problem, with a discontinuity, which vanishes as z+ -im, is given by the 
automorphous analog of the Cauchy-type integral c/9/, Sect.52) with the basic automorphous 
function eiZ by: 

J/f0 (z)= _&_ 5 “{‘-Jt_“l!:1 df 
LO 

Thecanonical solution X(z)of the Riemann problem (1.5) in the class of functions with in- 
tegrable singularities at the points a,, and b,, is based on the solution of the problem of 
discontinuity. Changing the form of the known method of approach (/9/, Sect.52) appropriately 
we obtain, in the case of open contours, 

x (z) = fi (e’z - eib?l) &Ye , r (z) = & j ‘y;:’ df = (+ 
n=1 0 

where the principal value of the logarithm is used in computing 
relations follows 

X cz)=fi (eiz_ ,%~/.+iv (,iz-- eib,)-l/Z-iy 
n=1 

y = V,IC-~ In g. From the above 

and the branch of the canonical solution chosen here is determined by the asymptotics eiNZX (2) 

+1,z-+---im. The general solution of the Riemann problem vanishing at the lower endofthe 
band of periods is found in the usual manner. Taking into account (1.4), we obtain 

(1.6) 

The complex constants c,,' are found from the conditions of uniqueness of the displacements 
during the passage around the cuts 
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*ll s --& [(u + iv) (x + i0) - (u + iv) (x - iO)] dx = 0, n = 1, . . ., N (1.7) 

k 

Let us return to the problem (1.1). The solution (1.3)- (1.7) of the problem (1.2) cor- 
responds to the boundary conditions 

u,sm (Z + 2kn f i0) = Re g*' (5) cos kq - Im g*' (2) sin km 

z,~~~ (Z + 2kn f i0) = -Re g*‘ (2) sin kq - Im g,t* (z) cos kcp 

ZJE b, k = 0, fl,. . . 

(1.8) 

Integrating this solution and the conditions over the whole z-plane, in cp, from 0 to 2n, 
yields a new solution (a Green's function u" + id of a kind) corresponding to the new condi- 
tions 

l/zn-luy' (5 + 2kn f i0) = Re g*” (z)&., (1.9) 

xl,n-lr xv* (z + 2kn f i0) = Am g,” (z)&,,, 5 fE &I, k = 0, &1,. . . 

where &, is the Kronecker delta. Superposition of the solutions U' and d displaced along 
the x-axis by 2ns 

m 2% 

u(z)= r, 1 US~(Z + 24 dv, V(Z)= ,f$ 2S”L”m(z+ 2nz)dq (1.10) 
83--m 0 a--e 0 

clearly represents the solution of the initial problem, satisfying the conditions (1.1) atthe 
point of the z-plane at which the series (1.10) converge. 

Example. Let N= 1, q= - a,b, = a. O<a<n be a band of periods of weakening due to a 
single slit. In this case P18(eiz) = c 3 1, and according to (1.6) and (1.7) we have 

x (z) = (,iz _ ,-io)-V~+iv(,iz_ eia)-‘/riy (1.11) 

a a a 

c,‘= - 6 s @=x+ (z) ei-‘l” (t) & dz 
-I- $- s [(x1- ug+‘w --((xP-l)g_1(=)]d~}[2~ ~X+(~)1~==dz-j-’ 

-a -a 
(P - e’“) x+ (t) 

-a -a 

The integrals appearing in this expression should be taken as their Cauchy principal values. 
Let us find the asymptotics of the stresses growing without boundsatthepoints z=faf 

Zkn, k = 0, f: 1, . . . . Assuming that K+(Z)= K-(Z) outside 4, we obtain, by virtue of (1.3), for 
the case of an arbitrary N,(o, - ir,,)(~)= (cl+cp) K(Z). Integrating the function K(z) with respect 
to 'p from o to 2n and taking into account (1.9) we obtain, according to (1.4) and (1.6), 

(1.12) 

The expression within the curly brackets is bounded when I = n,+Zkn and I= b,+2kn; the 
character of the singularities at these points is determined by the behavior of the function 
X(z) in (1.6), and has the form 

(0" - i+,.J* (z + Zka) = (Mzn - iNkr,) 1 z - d,, I-“z*i”, z E (- n, n) (1.13) 

where the upper signs are taken when d,= a,, and the lower ones when d, = b,. 

sity 
Let us return to the case N= 1 and use it to show the method of calculating the inten- 
coefficients at any Nand n. We write the canonical solution (1.11) in the form 

x tz) = & exp (ay _ +) (sin2.$L)-“z+iv (sin F)-““’ 

Then for ZE Lo we have, putting 1 = P, 

(1.14) 
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If ZE(U+ 2kn, n-tZkn),k = 0,&I,,.., then X(z) is given by the formula (1.14). Substituting 
(1.14) and (1.15) into (1.12) and taking into account (1.13), we obtain 

(cl + cJ(2sin a)-'iz+z~ ' 
MMC,, - iN;, = 

II exp (‘/&) is ( 
L” 

sin a++/‘-+ (~in,)‘/“‘v x 

eq (ay + iaa + ikq) Cl* dq, 

Remarks.1'. We can use the above method without any alterations to solve the analogous 
problems for a set Lk of perfectly rigid, thin and weakly bent inclusions of arbitrary shape 
distributed along the boundary separating different materials in a composite plane, when the 

condition (u+ iu) (2 * i0) = g* (z), 5 E Lk should hold instead of (l.l), as well as the problems of 
pressure exerted by a system Lk of stamps on a half-plane, the stamps fully coupled or touch- 
ing its boundary without friction. Following /7,10/ we can reduce the same mixed problems for 
a multilayer strip and half-plane to the normal Poinca&-Koch systems. 

2'. The conditions (1.2) correspond to (1.1) which have been directly transformed over 
the index k, with parameter rp. Indeed, let us ,introduce the following discrete Fourier 
transformation f* (cp) of the function f(k): 

m 

f* (q~) = 2 f (k) e+~ 
k=--ca 

and the vector U (2) = (u, D, o,,.c,,) (2). Then the condition 

(oU - ir,,) (Z + 2kn f i0) = g+’ (5) &e, z E L, 

which essentially coincides with (1.1) (according to (1.8)- (1.10) it defines the Green'sfunc- 
tion of the problem (1.1)) and condition of continuity 

U (2kn + n - 0 + iy) = U (2kn + n + 0 + ill), - M < y < m 

having been subjected to discrete Fourier transformation, will yield the following condition 

at the boundaries of the elastic strip -z <z< n: 

('T!, - ir,J* (x * i0) 6 B+* (z), J E L, 

u* (n - 0 + iy) = fPu* (- n + 0 + i!,), - cc < y < M 

Clearly, the above boundary conditions determine the same problem for the transformed quanti- 

ties, that conditions (1.2) do for the stresses themselves in the whole plane. The discrete 

Fourier transform could be applied, in its explicit form, to the boundary value problems of 

the type (1.5) (but not to the equations of the theory of elasticity as in /6/) which are ob- 

tained by substituting the solution (1.3) into the condition (1.1). The results obtained by 

both methods coincide. 

2. In the field of shear and normal compressive stresses homogeneous at infinity, the 

load-free slits can become completely closed and yet act as the stress concentrators thus pre- 
senting a danger from the point of view of the theory of fracture. We shall consider the 

problem of Sect.1 for the closed slits when the conditions (1.1) at their edges are replaced 

by the conditions of continuity 

zry (5 f i0) = h* (r), u(s+iO)=U(s-_O), rJV (5 + i0) = 0, (z - i0) (2.1) 

r E Lk, k = 0, fl, *2,... 

In contrast to the problem for the open slits /7,8,11/, the above problem has not apparently 

been studied, neither in the case of periodic loads, nor in the case of a finite number of 

slits. Let h*(r) denote the periodic functions h+(s + 2kn) = h&(z), SE L,, k= 0,&l,... self- 

equilibrated within the set. Retaining the solution in the form (1.3) and substituting it in- 

to (2.11, we obtain the following boundary value problems for the functions IM(z)and CD (2) = 

-i(c, + c,)K(z) , %I -periodic, regular in the z-plane with cuts, and vanishing at infinity: 
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M+ (z) - M- (5) = m (z), zE L, 

Re @+ (5) = r+ (z), 5 E L, 

Re @- (2) = r- (z), x E L,, m (z) = ---iA h, (5) - !a_ (~$1 

(2.2) 

(2.3) 

(2.4) 

r+ (5) = c,q (2) + r (4 r- (3) = -c,q (z) + r (4). r (5) = - A Ic,h+ (5) + c&_ @)I 

q fz) -= mA (x1x2 - i)Ih+ (z) - k @)I 

The solution of the problem of discontinuity (2.2) is given by (1.6). The Dirichlet 
problems (2.3) and (2.4) can be reduced, according to the known results (/12/,Sect.91) to two 
Riemann boundary value problems 

Y+(I)+Y-(x)=rp(4, s=Ll (2.5) 

hl+(s)-Q-(Z)= o(5), ZEL, (2.6) 

11,(z)=r+(z)+r-(z), q(.z)=r+(z)-r-(z) (2.7) 

for the %c-periodic functions u'(z) and n(z) defined by the equation o(z)= Y(z) + P(z) and 
satisfying the additional conditions 

g (2) = Y (z), il (z) = -Q (2) (2.8) 

The solutions of the problems (2.5) and (2.6) in the class of functions vanishing at infinity 
and integrable near the points a,,, b,,n = 1,2,...,N, have the form 

d’rp (f) dt 
p _ eiz) x+ (t) + pN ce’*) ’ (‘) (2.9) 

where c,, are complex constants determined by the first condition of (2.8) and the condition 
analogous to (1.7) 

b" 

s 
~[u(5~iO)--((z--O)]dz=O, n=i,2,...,N (2.10) 

%I 

In the case of a finite number of slits in the z-plane distributed over the segments 
L, only, the solution can be obtained by expandingtheexponential functions (1.6) and (2.9) 
into series in powers of t and z /13/. Restricting ourselves to the first terms of the expres- 
sions we obtain, in the limit, 

Wz)=&S -y&y cqz)=&\ _gyt 
Lo i 

(’ ?;‘x”: (q + x iz) PN cz) , x (Z) = fi (z - q&‘/z (z _ b,)-‘/z 
n=1 

where c,, are real constants satisfying the condition (2.10). 

3. In the case of a homogeneous plane the problem (2.1) can be solved for the arbitrary 
nonperiodic loads. Indeed, in p,= pz and v1 = v~, thenthe solutioncanbe separatedintoasum 
of a) symmetric with respect to the z -axis, and b) skew symmetric solutions. The problem 
a) represents a trivial fundamental problem for the lower half-plane y<O with the boundary 
conditions 

zXy (5 - LO) = --'I, [h, (a~) - h_ (z)], v (z - i0) = 0, z E (-m, 00) 

and problem b) is equivalent to the problem (1.1) in which we must put 
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Re g* (4 = 0, Im g* (t) = --‘i, [IL+ (5) + h_ (cc)1 

The second condition of (2.1) will hold by virtue of symmetry. In the general Case the 
problem (2.1) remains unsolved. 
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